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Semi-Dirac point in the Hofstadter spectrum
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The spectrum of tight-binding electrons on a square lattice with half a magnetic-flux quantum per unit cell
exhibits two Dirac points at the band center. We show that, in the presence of an additional uniaxial staggered
potential, this pair of Dirac points may merge into a single one with a topological transition toward a gapped
phase. At the transition, the spectrum is linear in one direction and quadratic in the other one (a spectrum
recently named “hybrid” or “semi-Dirac”). This transition is studied in the framework of a general Hamiltonian
describing the merging of Dirac points. The possibility of creating gauge fields for cold atoms in optical lattices
may offer an opportunity to observe this merging of Dirac points and the hybrid dispersion relation.
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I. INTRODUCTION

Condensed matter offers the possibility of manipulating
the energy spectrum of electrons and modifying their free
dispersion relation. Band theory leads to complex dispersion
relations, commonly with quadratic expansions in the vicin-
ity of peculiar symmetry points. These quadratic expansions
are characterized by a tensor of effective masses, possibly
with positive and negative masses (near a saddle point).
Graphene offers the exciting situation where the dispersion
relation at low energy is linear, similar to the spectrum of
relativistic particles described by the Dirac equation.> More
precisely, the spectrum has the form of two cones (the so-
called “Dirac cones” or “Dirac points”) in the vicinity of the
K and K’ points of the reciprocal space. It has been recently
proposed and studied the existence of a hybrid spectrum,
quadratic in one direction and linear in the other one with
interesting consequences for the energy spectrum of Landau
levels in the presence of a magnetic field.> Such a spectrum
may appear in a hypothetical graphenelike structure where
one t' of the hopping integrals 7 between nearest neighbors is
increased.*~!1° By doing so, the two Dirac points move and,
for a critical value of this hopping integral (#'=2¢), they
merge into a single one with the peculiar hybrid spectrum.

Other possible systems exhibiting a hybrid spectrum have
been proposed including the organic conductor
a-(BEDT-TTF),I;,''"13 VO,/TiO, nanostructures.'* In the
context of VO,/TiO, nanostructures, the hybrid point has
been baptized a “semi-Dirac” point,'* a name that we will
use in this paper. Quite recently, one of us has proposed a
general framework to study the motion and the merging of
Dirac points in two-dimensional (2D) crystals with time-
reversal and inversion symmetries, within the framework of

the following Hamiltonian:"
2
0 A + q” * iciqi
Ha) " (n
q)= 2 s
A+ 23)1* +ic,q, 0

where, by varying the product m*A from negative to positive
values, a topological transition separates a phase with two
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Dirac points from a gapped phase with a semi-Dirac spec-
trum at the transition, i.e., when A=0. This Hamiltonian is
universal in the sense that the parameters do not refer to a
specific crystal and can be related to the microscopic param-
eters of any 2D system. It has been shown that in a magnetic
field B, _the Landau-level spectrum evolves continuously
from a VnB dependence to a linear (n+1/2)B behavior with
a [(n+1/2)B]*? dependence at the transition.>”"

At the moment, there is no straightforward experimental
evidence for such merging of Dirac points in electronic sys-
tems. A very interesting alternative is the possibility of fab-
ricating a “crystal” of cold atoms in an artificial optical lat-
tice. Two types of systems have been proposed:

The first one is to trap cold atoms in an optical honey-
comb lattice and thus simulate graphene physics.”~!” Two
recent extensive studies have shown the possibility of tuning
the position of the Dirac points by changing the intensity of
the laser fields.!>!7

The second proposal concerns the square lattice.
this case, it is known for electronic systems that a Dirac
spectrum is obtained in the presence of a magnetic field cor-
responding to a half-flux quantum per elementary plaquette
(the so-called 7r phase because the total phase accumulated
by the electron around the plaquette is 77). A major compli-
cation stems from the fact that the atoms are neutral and are
not coupled to a magnetic field. However, a fictitious mag-
netic field can be induced by a rotation of the sample (then
the role of the magnetic field is played by the Coriolis
force'®) or by effective gauge potentials.'® Quite recently, a
detailed experimental scheme has been proposed, to simulate
massless Dirac Fermions on a square lattice by creating a
fictitious half-flux quantum per plaquette.'®! Note that it
has also been proposed that by sweeping the amplitude of the
gauge fields, it should be even possible to reveal the full
Hofstadter spectrum.'®??> The main goal of our paper is to
propose a mechanism of merging of the Dirac points for cold
atoms on a square lattice. The mechanism is quite different
from the case of the honeycomb lattice. Whereas in the latter,
the merging transition is driven by a variation in some of the
nearest-neighbor hopping integrals, which may be difficult to
achieve experimentally, here we propose a simple staggered
on-site potential as the driving parameter.
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The so-called Hofstadter spectrum represents the energy
levels of two-dimensional electrons on a square lattice in a
magnetic field within the nearest-neighbor tight-binding
model.?* The spectrum depends on the value of the magnetic
flux ¢ through an elementary plaquette of the lattice. For
rational values of the reduced magnetic flux, ¢o=¢/py=p/q,
¢o=h/e being the flux quantum, the electronic spectrum
consists of ¢ subbands, leading to the famous fractal struc-
ture of the spectrum.

It is well-known that for a half-flux quantum, ¢=¢,/2
=h/2e, the spectrum exhibits two Dirac cones at the band
center, quite similarly to the spectrum of graphene. One may
wonder if these two Dirac points can be manipulated (moved
and merged) by some additional parameter, somehow simi-
larly to the modification of the transfer integrals in the hon-
eycomb lattice. In this paper, we show that an appropriate
additional parameter is a staggered potential applied along
one direction. The addition of this uniaxial staggered poten-
tial modifies the position of the Dirac points which may
eventually merge into a “hybrid/semi-Dirac” point for a criti-
cal value of the potential. The structure of the paper is the
following. In Sec. II, we review the basic equations for elec-
trons on a square lattice in a magnetic field and a uniaxial
staggered potential. We discuss the general structure of the
resulting Hofstadter spectrum. After a brief analysis of the
low-field spectrum (Sec. IIT), we present our main results in
Sec. IV on the evolution of the spectrum for a flux in the
vicinity of ¢y/2. After a short analysis of the spectrum near
the extrema of the band, we study the spectrum near the
center of the band (e=0). For ¢,/2, it consists of two Dirac
cones which merge for a critical value of the staggered po-
tential. Using the mapping to an effective Hamiltonian near
€=0, we describe quantitatively the evolution of the Landau
levels in the vicinity of ¢,/2. We conclude in Sec. V.

II. BUTTERFLY SPECTRUM WITH A UNIAXIAL
STAGGERED POTENTIAL

We consider the problem of tight-binding electrons on a
square two-dimensional lattice. The sites are written as x
=ma and y=na, a being the lattice spacing. In addition, we
apply a uniaxial staggered potential of the form (—1)"A;
along the x direction, as illustrated in Fig. 1. The unit cell is
made of two atoms having different site energies £A,. In the
presence of a perpendicular magnetic field B, using the Lan-
dau gauge where A,=Bx, the Schrodinger equation reads

-2i 2i
6¢m,n == t¢m,n+le e — t¢m,n—le e — t¢m+1,n - tqsm—l,n

+ (_ 1)mAs¢m,n’ (2)

where ¢, , is the amplitude of the wave function on site
(m,n), r is the hopping integral between nearest neighbors,
and @=eBa?/h is the dimensionless flux through an elemen-
tary plaquette of the lattice. Consider the case of a commen-
surate flux ¢=p/q where ¢q is even. There are ¢ inequivalent
sites in the unit cell, which is now ¢ times larger along the x
direction. We introduce a cell index [ so that m=gl+j, where
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FIG. 1. Square lattice in a uniform magnetic field and a uniaxial
staggered potential along the x direction. The black and white disks
represent the on-site potentials =A,. ¢ is the dimensionless flux per
plaquette.

Jj is the position of the site in the unit cell: j=1,...,q. Since
there are ¢ sites per unit cell, the Brillouin zone in the x
direction is ¢ times smaller and Bloch’s theorem implies that

bun= d>§’,3 - lﬂl((i) oikdatkyn)a 3)
with k=(k,,k,) and we have
vy = o @

The Schrodinger equation now reads
el ==tV =™V = 209) cos(kya - 2mj¢p)
+ (= A, (5)

et == 197 = g e 1 = 21 cos(kya - 27) = Ay,

(6)
€ ;:1) =— t(ﬂ}c"_l) — tzﬁ;cl)ei"kxa - 2t¢§;’) cos(k,a —2mq )
+ (= DIAYY. (7)

This is a g X ¢ system with g eigenvalues. If ¢ is odd, sites
with even and odd m are inequivalent, and the unit cell has a
size 2qa in the x direction. Equations (6)—(8) are unchanged
(except g—2q since j=1,...,2¢) and 27"V =yiV.

The Fig. 2 present the evolution of the spectrum (energy
in units of ¢ versus magnetic flux) when the staggered poten-
tial A, is increased. Figure 2(a) is the familiar Hofstadter
spectrum obtained for A =0. Figure 2(b) shows the spectrum
for A;=t. The most striking difference between Figs 2(a) and
2(b) is that many gaps have been filled. This is even more
spectacular in Fig. 2(c), corresponding to the critical value
A =2t of the staggered potential for which the Dirac points
in the ¢=1/2 dispersion relation merge, as we will see
later.>* This suppression of many gaps is qualitatively under-
stood by the fact that, when A; increases, there are more and
more open classical orbits which are not quantized, as we
discuss in Sec. IIT A.

The main goal of our paper is the study of the spectrum
near half-flux quantum ¢=1/2, near the center of the band.
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FIG. 2. (Color online) Evolution of the Hofstadter spectrum for
the square lattice, in the presence of a uniaxial staggered on-site
potential characterized by the parameter r=A,/(21). (a) r=0, this is
the usual Hofstadter spectrum. In the center of the band (e=0) near
¢=1/2, the energy levels vary as V’rTf, where f=|p-1/2]. (b) r
=1/2, the degeneracy of the levels near e=0, ¢=1/2 has been
lifted. (c) Spectrum at the critical point r=1. The levels near e=0,
©=1/2 vary as [(n+1/2)f]*>.

For A,=0, this spectrum is quite similar to the low-field
spectrum of graphene: due to the presence of two Dirac
points, the spectrum near ¢=1/2 consists of a series of Lan-
dau levels varying as \nf, where f=|@—1/2]| is the deviation
from ¢=1/2 [Fig. 2(a)]. These Landau levels are doubly
degenerate due to the twofold degeneracy of the Dirac spec-
trum. When A; increases, the degeneracy is progressively
lifted [Fig. 2(b)] and at the critical point A;=2 [Fig. 2(c)], the
levels vary as [(n+1/2)f]*3, as we will show in Sec. IV C.
Then, for A;>2, a gap opens and the Landau levels progres-
sively evolve toward a linear variation as (n+1/2)f. We now
discuss the different parts of the spectrum and their evolution
when the staggered potential A, is increased.
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FIG. 3. (Color online) Zero-field spectrum e(k) for tight-binding
electrons on the square lattice with a staggered potential. The two
bands overlap when r<<1. Left panel: »=0.5. Right panel: when r
=1, the two bands no longer overlap. We have represented the plane
€=0.

III. LOW-FIELD SPECTRUM
A. Zero-field spectrum

In zero field due to the staggered potential, the Hamil-
tonian has a 2 X 2 structure

cos ky— r

cos k, ), ®)

cos ky+ r

H(k) =—2(

cos k,

where we introduce the dimensionless parameter r=A_/(2r)
=A,/2 and where we choose from now t=a=%=e=1. There-
fore the zero-field spectrum is given by

e(k) =—2 cos k, = 2vcos? k, + 2. 9)

As shown in Fig. 3, the spectrum consists of two bands
which overlap in energy. The lower band extends from 6?’””
=-2-2V1+7* to €'“=2-2r with two saddle points (which
yields logarithmic singularities in the density of states) at
energies €'=-2-2r and €2=+2-2y1+r°. Symmetrically,
the upper band extends from €'"=-2+2r to €'=2
+2\1+ 7% with two saddle points (with logarithmic singulari-
ties) at energies €'=—2+2\1+72 and €2=2+2r. The posi-
tion of these points is shown on Fig. 4 on a plot of the
density of states.

In each band, the saddle points separate regions with open
orbits (for energies between the two saddle points) and
closed orbits. When A =0, all orbits are closed and the total
bandwidth for incommensurate fluxes is zero. This can be
qualitatively understood on semiclassical grounds: all closed
orbits are quantized and magnetic breakdown induces tunnel-
ing between orbits which are all quantized.”> When A, in-
creases, there are open orbits which are not quantized and the
total bandwidth for incommensurate fluxes increases like the
number of open orbits.? This qualitatively explains why the
spectrum is more and more dense when A, increases.

B. Low field spectrum, at the edges of the band

At low-magnetic field (¢<<1), the energy levels near the
extrema of the band, are grouped into linear Landau levels
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FIG. 4. (Color online) Zero-field density of states for tight-
binding electrons on a square lattice with a staggered potential,
corresponding to the dispersion relation Eq. (9) for (a) r=0, (b) r
=0.5, and (c) r=1. We have plotted the density of states in the lower
band (dashed line), the density of states in the upper band (dotted
line), and the total density of states (full line).

(Fig. 2). Their spectrum is obtained from a low-energy ex-
pansion of the dispersion relation Eq. (9) near k=0

_ ol L
e(k)=+2(1+\1+r2)_(\—1+r2+ky)+--- (10)

leading to a cyclotron mass ny=(1+7r%)""4/2 and therefore to
a set of Landau levels given by (B=2r¢ in our notations)
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FIG. 5. (Color online) Low field part of the Hofstadter spectrum
€(p), in the presence of a uniaxial potential with r=0.5, in the
energy range [—1,1]. The intermixing of the Landau levels is de-
scribed in the text and given analytically by Eq. (13).

41 1
— L2
()= F2+2\1+r im(rz+§)(p+ LRI
(11)

which describes properly the evolution of the Landau levels
at the extrema of the spectrum (Fig. 2).

C. Low field spectrum, center of the band

Figure 2(b) shows that, in the middle of the band and for
a finite A, two set of Landau levels intermix. This is empha-
sized in the enlargement displayed in Fig. 5. This structure is
easily understood by looking at the zero-field spectrum, dis-
played on Fig. 3. When 0 <r<1, the spectrum is formed of
two overlapping bands. The maximum of the lower band is
located at energy €=2(1-r) and the minimum of the upper
band has energy e=—2(1-r). An expansion around these en-
ergies gives

k2
E(q+):I2(1—r)i(k§+—x>+---, (12)
r

where ¢ are deviations, respectively, to the points (7/2,0)
and (7/2,7). Therefore the cyclotron mass scales as my
= v;/2, and the two sets of Landau levels are given by

€,(p) = IZ(I—r)i%(n+%)(p+---. (13)

When r=1, the two sets of Landau levels separate [Fig. 2(c)].
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FIG. 6. (Color online) Evolution of the electronic spectrum at
¢@=1/2, when a uniaxial staggered potential (—=1)"A; is added. The
four plots correspond, respectively, to r=A;/2=0, 0.7, 1, and 1.2.
Note that along the k, direction, we have represented two Brillouin
zones, the first zone being [—7/2,7/2].

IV. SPECTRUM NEAR ¢=1/2

We now concentrate on the region of the butterfly spec-
trum near ¢=1/2. Its peculiar structure can be explained
from the spectrum precisely at ¢=1/2, which plays the role
of a zero-flux spectrum perturbed by a small magnetic effec-
tive flux f=|¢@—1/2|, corresponding to an effective magnetic
field B;=2mf (the real field being 7+ By in our units). We
first describe the low energy part of the spectrum. Then we
study the vicinity of the band center where the spectrum
consists in two Dirac cones which progressively merge when
the staggered potential increases until the value r=1.

A. Spectrum for ¢=1/2
For ¢=p/q=1/2, the Hamiltonian has the form

) (2(cos ky—r)  1+e ) (14)
- L+e*  2(r—cos k)
with r=A,/2. The energy spectrum given by
ek)= = 2/cos? k,+ (cos k, — r)? (15)

is plotted on Fig. 6 for different values of r. It exhibits a pair
of Dirac points and their merging occurs when r=1.

B. Spectrum near ¢=1/2, low energy

An expansion of the dispersion relation Eq. (15) near its
extrema at k,,=(0, ) gives (¢=k-k,,)

)2(+(1+r)q2

— q
ek, +q)= F2\2+2r+r* + F——+="0 1
1 2425+ 17

(16)

The cyclotron mass m,, is therefore
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2 +2r+17

my= (17)
0 2Nl +r

so that in low “flux” f

1+r 1
= T2\242r 472 +4 \/—< +—> b
&)= F 22+ 2k s dmyo s\ )

(18)

C. Spectrum near ¢=1/2, center of the band: Dirac points
and their merging

This study is the central point of our paper. When r=0,
the energy vanishes at the two inequivalent points D,
=(m/2,&mw/2) where é= = 1 is the valley index. In the vicin-
ity of these two points, writing k=D +q, the Hamiltonian
can be expanded as

—1 N
H(D§+q)=z(§qy I ) (19)
gy — gqy
In each valley, the dispersion relation around Dy is
€Dy +q) =24&q, (20)

as can be seen on Fig. 6(a).

We now apply a finite uniaxial staggered potential A
# 0. The Dirac points move and are now located at the po-
sitions Dg=(m/2,£ arccos r) [see Fig. 6(b)]. A second-order
expansion around these two points leads to

2

&Vl —rzqy+r%2 —iq,
HDg+q)=2 qz
iqx _g\tl_rzqy_r_zz

(21)
with a dispersion relation at small g of the form
eDg+q) = ENciqr +ciq, (22)

with ¢,=2 and cy=2\x’m.

When r is increased, the two cones become anisotropic
because the velocity along the y direction relating the two
cones is reduced [Fig. 6(b)]. When r=1, the two cones have
merged into a single one at the point Dy=(7/2,0) [Fig. 6(c)]
and the Hamiltonian becomes

2

QX - qu
Holg) =2 ) (23)
iqx - C_IZX

leading to the “hybrid” dispersion relation

elg) = * 2\Vq; + g}/ (24)

Quite remarkably, this dispersion relation is linear in one
direction and quadratic in the other. The study of this semi-
Dirac point has been the subject of a series of recent
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works3~1026 and the present problem constitutes a new real-

ization of this merging.
We now wish to describe the physics of the merging, us-
ing the effective Hamiltonian

2
A+ q”* —l.CJ_qL
2m
H= ) (25)
ic,q; —A—ﬂ
2m*

with ¢=¢, and ¢, =q,. Within the rotation in Hilbert space

I 0 —i
R:V—E(H—wy) where o, = -

is a Pauli matrix, it is identical with the universal Hamil-
tonian (1) that has been recently introduced to describe the
merging of Dirac points in a 2D crystal with time-reversal
and inversion symmetries. When m*A >0, there is a gap in
the spectrum. Comparison between Eq. (25) and the expan-
sion of Eq. (14) near D, implies that A=2(r—1). When
m*A <0, the spectrum has two Dirac points separated by
2y=2m"A and the velocity ¢, near these Dirac points is ¢
=\=2A/m".

In order to quantitatively describe the merging of the
Dirac points from the Hofstadter spectrum (r=0) to the to-
pological transmon (r=1), we choose to fix the velocities
ci=c, =2\1-/2 and ci—c =2. Then, the mass m" has to be
fixed as m’ ——2A/cH—1/(l+r) The position of the Dirac
points is given by gp= +2\ - slightly different from the
real position gp= * arccos r (see Ref. 9, for a discussion on
this choice).

Using the universal Hamiltonian (25) whose properties
are known in a magnetic field, we now describe the evolution
of the spectrum when approaching the merging. When r is
small, the spectrum near €=0 can still be described as two
independent cones with modified velocities ¢, =2 and ¢
=2\1-72. It is known that in this case,?’ the spectrum is
quantized in twofold degenerate (due to the valley degen-
eracy) Landau levels with the dispersion relation e,
= *\2nc|c , eB. In our notations, this gives

6,(f)= = 4(1 = AV anf (26)

as confirmed on Figs. 7(a) and 7(b). When r increases, the
domain of validity of this expression is reduced. As seen in
Figs. 2(b) and 7(b), the twofold degeneracy of the Landau
levels is removed when f is increased (in particular the n
=0 level) until for r=1, the degeneracy is completely re-
moved with a new field dependence of the levels.

When r=0, the Landau levels are doubly degenerate due
to the valley degeneracy of the two Dirac points. When r
increases, the two valleys become coupled and the degen-
eracy is progressively lifted. The spectrum in the vicinity of
¢=1/2 can be described using semiclassical arguments. It
can be obtained from Bohr-Sommerfeld quantization S
=2m(n+7y)eB, where S is the area of a cyclotron orbit of
energy € in reciprocal space.
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FIG. 7. (Color online) Flux dependence of the energy levels of
the tight-binding model on the square lattice, near ¢=1/2, and for
an alternate staggered potential characterized by r=A,/2. (a) The
Hofstadter spectrum (r=0). (b) r=.5 and (c) r=.75: the twofold
degeneracy of the levels is progressively removed. (d) r=1, at the
merging of the Dirac cones, the Landau levels vary as [(n
+1/2)f%3. The continuous black lines are the results of the semi-
classical quantization, which is quite good except, in the vicinity of
the energy e=—A=2(1-r). At the merging r=1, the energy levels
are very well fitted by semiclassical calculation except the ground
state for which a numerical factor has been introduced (see text).

We have to distinguish two regimes [Fig. 6(b)]. In the
low-energy regime e<—A=2(1-r), this is the area enclosed
by one of the two degenerate isoenergy lines encircling one
Dirac point. For the Hamiltonian (1), this area has been cal-
culated in Ref. 9. Moreover, it has been argued that due to a
Berry phase = around each Dirac point, the mismatch fac-
tor vy is 0. Therefore we find
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\m{<e+A>K[R(§)] _AE[R(f)]}zw\/Tnf,

(27)

where K(x) and E(x) are complete elliptic integrals of the
first and second kinds, respectively,?® and R(x)=\2x/(x—1).
In the limit e<<—A, one recovers Eq. (26).

In the high-energy regime e>—A that is above the saddle
point, the area enclosed by an isoenergy line encircles the
two Dirac points so that, due to the cancellation of Berry
phases, the mismatch factor 7y is now 1/2. The calculation of
the area S(e) is this regime gives the semiclassical quantiza-
tion rule

r 1 1
' 6{(6+ A)K[R(G/A)] ) 2AE[R(6/A) ”

=3ﬂlvﬁ<n’ + %) 1. (28)

In the limit A — 0, one recovers Eq. (31). It is shown on Fig.
7 that this semiclassical approximation fits very well the nu-
merical calculations, except in the vicinity of the line e=
—A corresponding to the saddle point separating the two
Dirac points (Fig. 6).

To go beyond this semiclassical picture, we may explicitly
diagonalize the Hamiltonian (25) in a magnetic field. Using
the Landau gauge A =Bx, and performing the Peierls substi-
tution g;— g,—eBx, one finds that the eigenvalues €, are so-
lutions of an effective Schrodinger equation (see details in
Refs. 7 and 9)

® 2.2 \2/3
gnl/,z(%> [P+ (5+X)2—2X]y.  (29)

2c,

where P=(

m*w

mensionless momentum and position [(X,P)=i]. We have

w2
1/3 —(m9N1/3 : :
g) q, and X=( 2% )!"x are respectively di-

* 2.2
introduced the dimensionless parameter 6=A/ (%)1/ 3.In
our case, this is a unique function of the flux f and of the
parameter r describing the merging

(r-1)

Equation (29) is an effective Schrodinger equation for a
particle in a double-well potential V(X)=(5+X?)>-2X. It has
been extensively studied in Ref. 9, where its eigenvalues are
plotted as a function of the unique parameter o. Let us recall
here its main characteristics. When 6<<0, the two wells of
the potential are well separated, one recovers a \nf spectrum
of degenerate levels, properly described by Eq. (26), with an
excellent fit of the butterfly spectrum near ¢=1/2, =0 [Fig.
7(a)]. When —& is decreased, that is when r or f is increased,
the potential barrier between the two wells is reduced, and
the tunneling between valleys becomes important. Therefore
the twofold degeneracy of the levels is removed, as seen on
Figs. 7(b) and 7(c).

When 6=0, that is r=1, the spectrum exhibits a single
semi-Dirac point. The effective potential V(X) is now a quar-
tic potential V(X)=X*-2X. In Ref. 3, a simple Wentzel-

(30)
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Kramers-Brillouin quantization argument leads to €
=*+A(mc )"*[(n+1/2)w.]*?, where w,=eB/m* and A
=3237/T(1/4)*3. Using the values of the parameters men-
tioned above, we expect, at the critical point

€= iG(n’+%>f2/3 (31)

with G=2[367°/T'(1/4)*]"*=7.99. This approximation is
quite good as soon as n>1. However, it has been shown in
Ref. 3, that for the ground state, the prefactor has to be
multiplied by a factor g,=0.808.3 Figure 7(a) shows a re-
markable agreement with the semiclassical calculation.

V. CONCLUSION

It is of great interest to study the physics of Dirac points,
their motion, and possibly their merging in condensed matter
models. In the case of the honeycomb lattice, the motion and
merging has been known to be driven by a modification of
hopping parameters while it is known that a modulated on-
site potential opens a gap in the spectrum (like in the case of
Boron Nitride) due to parity breaking. Here, we have shown
a situation, the Hofstadter problem on a square lattice with
half-flux quantum per plaquette ¢,/2, where the motion and
merging of the Dirac points is not due to a change in the
hopping integrals but results from the application of an on-
site uniaxial staggered potential. The merging of the Dirac
points is discussed within a general Hamiltonian, and the
structure of the Landau levels near ¢,/2, is explained quan-
titatively.

Experimental observation of such a merging could be pos-
sible on an optical square lattice of neutral cold atoms, where
it has been proposed that massless Dirac Fermions could be
obtained in the case of half a flux quantum per plaquette.
This can be done by creating gauge fields acting on the in-
ternal states of the atoms.'*! By adjusting laser parameters
appropriately, it is possible to induce a finite phase for the
particles moving along a closed path of the lattice. Slightly
different scenarios have been proposed in order to reach a
state with a Dirac spectrum. In these different scenarios, the
merging can then be easily reached by the application of an
additional optical potential with the appropriate period 2a
along one of the main lattice axes. To identify massless
Dirac-fermionic spectrum, two methods have already been
proposed, Bragg spectroscopy and density-profile measure-
ment. Bragg spectroscopy directly gives access to the dy-
namic structure factor S(g,w). Its dependence on both sides
of the merging transition has already been discussed in Ref.
15 for the merging of Dirac points in the honeycomb lattice.
The discussion is quite similar for the physical situation dis-
cussed here. The density-profile measurement is a time-of-
flight experiment. By studying the ballistic expansion of the
atomic gas, it is possible to directly access the density of
particles. By measuring this quantity as a function of the
chemical potential, one obtains the energy dependence of the
density of states and its evolution near the merging
transition.' It has been recently calculated in the framework
of the Hamiltonian (1) and can be easily used as a test of the
merging.’
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We became recently aware of a work?® who proposed that
a similar merging could be observed in d-wave supercon-
ductors. In these systems, the low-energy spectrum exhibits
massless Dirac Fermions. In this case, it is found that the
merging could be driven in the presence of a charge-density
wave (CDW) ordering. It turns out that the description of this
merging is quite similar to the problem we are studied here—
the Dirac spectrum being due to the d-wave superconducting

PHYSICAL REVIEW B 82, 035438 (2010)

ordering and the alternate potential being provided by a com-
mensurate CDW and could be described within our “univer-
sal Hamiltonian.”
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